Problem with a solution proposed by Arkady Alt , **San Jose** , **California**, **USA** Let $T_n(x)$ be polynomial defined by recurrence $T_{n+1} - 2xT_n - T_{n-1}, n \in \mathbb{N}$ with initial conditions $T_0 = 1, T_1 = x$. (First Kind Chebishev's Polynomials). Prove that $\sqrt[n]{T_n(x)} \leq 1 + n(x-1)$, $x \geq 1, n \in \mathbb{N}$;

Solution

Since $(1 + n(x - 1))^n = \sum_{k=0}^{\infty}$ $\sum_{n=1}^{n} n^k$ $\binom{n}{k}$ $\binom{n}{k}(x-1)^k$ then for the proof of inequality (1) $T_n(x) \le (1 + n(x - 1))^n$ convenient to use Taylor's representation of $T_n(x)$: $T_n(x) = \sum_{k=0}^{n}$ $\frac{T_n^{(k)}(1)}{k!}(x-1)^k$, because suffice to prove that $\frac{T_n^{(k)}(1)}{k!} \leq {\frac{n}{k}}$ $\binom{n}{k}$ $n^k \Leftrightarrow$ $T_n^{(k)}(1) \leq n^k \cdot \frac{n!}{(n-k)!}$ $\frac{n!}{(n-k)!}$ where $k = 0, 1, ..., n$. For calculation $T_n^{(k)}(1)$ we will partake derivative equation which define $n - th$ Chebishev's Polynomial $T_n(x)$: (3) $(1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0.$ In the supposition that for arbitrary $k = 1, 2, ..., n - 1$ consecutive derivatives $T_n^{(k+1)}(x), T_n^{(k)}(x), T_n^{(k-1)}$ satisfy to correlation $(1 - x^2)T_n^{(k+1)}(x) - a_k x T_n^{(k)}(x) + b_k T_n^{(k-1)}(x) = 0$ we obtain that $-2xT_n^{(k+1)}(x) + (1 - x^2)T_n^{(k+2)}(x) - a_kT_n^{(k)}(x) - a_kxT_n^{(k+1)}(x) + b_kT_n^{(k)}(x) = 0 \Leftrightarrow$ $(1 - x^2)T_n^{(k+2)}(x) - (a_k + 2)xT_n^{(k+1)}(x) + (b_k - a_k)T_n^{(k)}(x) = 0.$ Thus we have $a_{k+1} = a_k + 2$ and $b_{k+1} = b_k - a_k$ where $a_1 = 1$ and $b_1 = n^2$. Hence, $a_k = 2k - 1$ and $b_{k+1} - b_1 = \sum_{i=1}^{k} a_i$ $\sum_{i=1}^k (b_{i+1} - b_i) = -\sum_{i=1}^k$ $\sum_{i=1}^{k} (2i-1) = -k^2$ and therefore $a_{k+1} = 2k + 1, b_{k+1} = n^2 - k^2$. So, for $T_n^{(k+2)}(x)$, $T_n^{(k+1)}(x)$, $T_n^{(k)}$ we obtain following correlation $(4) (1 - x^2) T_n^{(k+2)}(x) - (2k+1)xT_n^{(k+1)}(x) + (n^2 - k^2)T_n^{(k)}(x) = 0$, where $k = 0, 1, \ldots, n - 1$ and in particularly for $x = 1$ we have: $(5) (2k+1)T_n^{(k+1)}(1) = (n^2 - k^2)T_n^{(k)}(1) \iff \frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)}$ $=\frac{n^2-k^2}{2}$ $\frac{n^2 - k^2}{2k + 1}$. For $k = 0$ inequality (2) obviously holds because $T_n^{(0)}(1) = T_n(1) = 1$. Since $\frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)}$ \lt n^{k+1} \cdot $\frac{n!}{k}$ $(n - k - 1)!$ $n^k \cdot \frac{n!}{n!}$ $\frac{(n-k)!}{(n-k)!}$ $\Leftrightarrow \frac{n^2 - k^2}{2}$ $\frac{1}{2k+1}$ $\times n(n-k) \Leftrightarrow$ $n + k \leq (2k + 1)n$ then, from of Math. Induction's supposition that $T_n^{(k)}(1) \le n^k \cdot \frac{n!}{(n-k)!}$ $\frac{n!}{(n-k)!}$

we immediately obtain that $T_n^{(k+1)}(1) = T_n^{(k)}(1) \cdot \frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)}$ \lt $n^k \cdot \frac{n!}{n!}$ $\overline{(n-k)!}$ $\cdot n(n-k) = n^{k+1} \cdot \frac{n!}{k!}$ $(n - (k + 1))!$.

Equality in (1) occurs if $n = 1$ and don't holds if $n > 1$. (because

$$
T_n(x) = (1 + n(x - 1))^n, x \ge 1 \iff T_n^{(k)}(1) = n^k \cdot \frac{n!}{(n - k)!}, k = 0, 1, \dots, n \iff T_n(1) = 1
$$

and
$$
\frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)} = n(n - k), k = 1, \dots, n - 1 \iff \frac{n^2 - k^2}{2k + 1} = n(n - k), k = 1, \dots, n - 1 \iff
$$

$$
n + k = (2k + 1)n, k = 1, \dots, n - 1 \iff (2n - 1)k = 0).
$$